Datasets
Purpose
A Dataset defines the structure (schema) of your data:
Column definitions (name, type, validation)
Data types and formats
Identity generation rules
Nested/hierarchical structures
Configuration
{
"type": "dataset",
"id": "customer_dataset",
"description": "Customer data structure",
"dataType": "RECORD",
"columns": [
{
"key": "customer_id",
"type": "TOKEN",
"token": "TEXT",
"mandatory": true,
"lookup": true
},
{
"key": "email",
"type": "TOKEN",
"token": "EMAIL",
"mandatory": true,
"lookup": true
},
{
"key": "full_name",
"type": "TOKEN",
"token": "TEXT",
"mandatory": true
},
{
"key": "phone",
"type": "TOKEN",
"token": "PHONE"
},
{
"key": "addresses",
"type": "DATASET",
"dataset": "address_dataset",
"array": true
}
],
"identityType": "DEFAULT"
}
Column Types
TOKEN - Simple data types:
TEXT- Plain text stringsEMAIL- Email addresses (validated)PHONE- Phone numbers (validated)NUMBER- Numeric valuesDATE,DATETIME,TIME- Temporal valuesBOOLEAN- True/false valuesGEO_COORDINATES- Geographic coordinates
DATASET - Complex nested structures referencing other datasets
Column Properties
key- Column name/identifiertype- TOKEN or DATASETtoken- Data type (for TOKEN columns)mandatory- Required field (validation)lookup- Create index for fast lookupsarray- Allow multiple valuesdataset- Reference to nested dataset (for DATASET type)
Identity Generation
Controls how record IDs are generated:
DEFAULT- System-generated UUIDSCRIPT- Custom Groovy script for ID generationCOLUMN- Use specific column value as ID