Skip to main content
Skip table of contents

Pipelines

Purpose

Pipelines orchestrate multi-stage data processing:

  • Data cleaning and normalization

  • Sequential transformations

  • Validation and quality checks

  • Custom processing logic

Configuration

JSON
{
  "type": "pipeline",
  "id": "customer_processing_pipeline",
  "description": "Clean and transform customer data",
  "dataset": "customer_dataset",
  "processors": [
    {
      "id": "cleaner",
      "processorType": "CLEANER",
      "properties": [
        {"key": "trim", "value": "true"},
        {"key": "uppercase", "value": "country_code"},
        {"key": "lowercase", "value": "email"}
      ]
    },
    {
      "id": "transformer",
      "processorType": "TRANSFORMER",
      "transformation": "normalize_customer"
    },
    {
      "id": "validator",
      "processorType": "SCRIPT",
      "script": "if (!record.email) { record.errors = ['Missing email'] }"
    }
  ]
}

Processor Types

CLEANER - Data cleaning operations:

  • Trim whitespace

  • Case conversion (uppercase/lowercase)

  • Format normalization

  • Validation rules

TRANSFORMER - Apply transformation resource:

  • Reference a transformation by ID

  • Sequential field mapping

SCRIPT - Custom Groovy scripts:

  • Complex business logic

  • Conditional processing

  • Custom validation

Processor Execution

Processors execute in order. Record flows through pipeline:

CODE
Record → Processor 1 → Processor 2 → ... → Processor N → Output
JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.