Skip to main content
Skip table of contents

Transformations

Purpose

Transformations map data from one structure to another, enabling:

  • Field renaming

  • Field concatenation

  • Constant value assignment

  • Custom mapping logic

Configuration

JSON
{
  "type": "transformation",
  "id": "normalize_customer",
  "description": "Standardize customer data",
  "source": "raw_customer_dataset",
  "target": "standard_customer_dataset",
  "transformationType": "MAPPINGS",
  "carryOverMetadata": true,
  "carryOverData": false,
  "mappings": [
    {
      "id": "map_id",
      "mappingType": "COLUMN",
      "source": ["customer_id"],
      "target": ["id"]
    },
    {
      "id": "concat_name",
      "mappingType": "CONCATENATE",
      "source": ["first_name", "last_name"],
      "target": ["full_name"],
      "delimiter": " "
    },
    {
      "id": "email_copy",
      "mappingType": "COLUMN",
      "source": ["email"],
      "target": ["email_address"]
    },
    {
      "id": "status_constant",
      "mappingType": "CONSTANT",
      "constantValue": "ACTIVE",
      "target": ["status"]
    }
  ]
}

Mapping Types

Type

Purpose

Example

COLUMN

Direct field mapping

emailemail_address

CONCATENATE

Combine multiple fields

[first, last]full_name

CONSTANT

Set fixed value

"""ACTIVE"

SCRIPT

Custom Groovy script

Complex business logic

Transformation Options

  • carryOverMetadata - Copy metadata from source to target (default: true)

  • carryOverData - Copy unmapped data (default: true)

JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.